Oxford Cambridge and RSA

GCE

Chemistry B

H033/02: Chemistry in depth

Advanced Subsidiary GCE

2021 Mark Scheme (DRAFT)

This is a DRAFT mark scheme. It has not been used for marking as this paper did not receive any entries in the series it was scheduled for. It is therefore possible that not all valid approaches to a question may be captured in this version. You should give credit to such responses when marking learner's work.

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations

Annotation	Meaning
Correct response	
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{l}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	AO element	Guidance
1	(a)	(i)	 bond angle $=109.5^{\circ}$	2	1.1(x2)	For MP1 there must be a solid wedge and a dashed line/dashed wedge in either position. IGNORE any connection of C - to rest of molecule. ALLOW 109-110
		(ii)	pi (π)-bond	1	1.1	ALLOW variations on the pi-bond, for example: However, there must be one above and one below the sigma-bond as drawn Discuss what is acceptable at SSU.
	(b)	(i)		1	2.5	ALLOW any unambiguous formula
		(ii)	add bromine water (and shake) AND (the bromine will) turn from orange/brown to colourless if there is (any) unreacted monomer OR (the bromine will) remain orange/brown if there is no unreacted monomer	1	2.7	

	(c)		$\mathrm{CH}_{3} \mathrm{CH}^{+} \mathrm{CH}_{2} \mathrm{Cl} \checkmark$	$\mathbf{1}$	$\mathbf{2 . 5}$	
	(d)	(i)	(In but-2-ene) both groups on each C-atom (of the double bond) are different / (in propene) one of the C-atoms (of the double bond) has two atoms / groups that are the same / has two H-atoms \checkmark	$\mathbf{1}$	$\mathbf{2 . 1}$	
	(ii)		2	$2.1(x 2)$		

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
2 (a)	(i)	$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HCl}+\mathrm{NaHSO}_{4}$	1	1.2	ALLOW equations forming $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{SO}_{4}$ IGNORE state symbols
	(ii)	phosphoric acid	1	1.1	
	(iii)	If black are marked as positive, white must be marked as negative and vice-versa \checkmark	1	1.1	
(b)	(i)	\mathbf{X} is hydrogen bromide \checkmark red/brown vapour is bromine	2	$\begin{aligned} & 3.1 \\ & 3.2 \end{aligned}$	
	(ii)	Add silver nitrate solution \checkmark Off white/cream ppt (of silver bromide) \checkmark	2	$\begin{aligned} & 3.3 \\ & 3.4 \end{aligned}$	
(c)		Any two from 1.Less than $240 \mathrm{~cm}^{3}$ of water should be used \checkmark (otherwise) rinsing cannot occur \checkmark 2 The glass rod should be rinsed (before removal) (otherwise) some (named) solute/solid is removed 67 The (volumetric) flask should be inverted (several times) \checkmark (in order to) thoroughly/properly mix the solution \checkmark	4	3.4 (x4)	the numbers 1,2 and 6 are the numbers in the procedure in the QP and may/may not be included in an answer

2	(d)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0471\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award 3 marks $\begin{aligned} & \text { amount } \mathrm{HCl}=23.55 / 1000 \times 0.1\left(=2.355 \times 10^{-3}\right)^{\checkmark} \\ & \text { conc } \mathrm{Na}_{2} \mathrm{CO}_{3}=0.5 \times 2.355 \times 10^{-3} \times 1000 / 25 \checkmark \end{aligned}$ $=0.0471\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \text { to } 3 \mathrm{sf} \checkmark$	3	$\begin{aligned} & 3.1 \\ & 2.8 \\ & 3.1 \end{aligned}$	ALLOW ecf MP3 is scored by any calculated number to 3 sf
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{7}$ award $\mathbf{4}$ marks mass of hydrate in $1 \mathrm{dm}^{3}=1.46 \times 4=5.84 \mathrm{~g} \checkmark$ mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $1 \mathrm{dm}^{3}=2.51 \times 10^{-2} \times 106=2.66 \mathrm{~g} \quad \checkmark$ Mass of water $=5.84-2.66=3.18 \mathrm{~g}$ Amount of water $=3.18 / 18=0.177 \mathrm{~mol} \checkmark$ Ratio $=0.177 / 0.0251=7 \quad$	4	2.8 (x4)	ALLOW ecf ONLY award MP4 if it is given as a whole number
	(e)	(i)	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-} \checkmark$	1	1.2	ALLOW $\begin{aligned} & 1-\rightarrow 1 / 2 I_{2}+e^{-} \\ & 21^{-}-2 e \rightarrow I_{2} \\ & 1--e \rightarrow x_{1}^{2} I_{2} \end{aligned}$ electron symbol with or without minus IGNORE state symbols
		(ii)	Bromine attracts electrons more (strongly) (AW) than iodine	1	1.1	ALLOW Br has fewer electrons/less shielding than I so attracts an extra electron more (strongly)
		(iii)	(dissolved) iodine \checkmark	1	1.2	
			Total	21		

Question			Answer	Marks	AO element	Guidance
3	(a)		homolytic (fission) / homolysis \checkmark	1	1.2	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.16 \times 10^{15}(\mathrm{~Hz})$ award 3 marks Energy needed to break one O-H bond $\begin{aligned} & =\left(\Delta H(\mathrm{O}-\mathrm{H}) / \mathrm{N}_{\mathrm{A}}\right) \\ & =463 / 6.02 \times 10^{23} \\ & =7.69 \times 10^{-22}(\mathrm{~J}) \end{aligned}$ Conversion of kJ to J $\begin{aligned} & =7.69 \times 10^{-19}(\mathrm{~J}) \checkmark \\ & v=E / \mathrm{h} \\ & 7.69 \times 10^{-19} / 6.63 \times 10^{-34} \\ & =1.16 \times 10^{15}(\mathrm{~Hz}) \checkmark \end{aligned}$	3	2.6 (x3)	The working for an incorrect answer MUST be checked in detail. Candidates may multiply/divide the numbers in a different order (or even combine steps) to that shown in the answer column so the order of/the numbers in this method of working may not necessarily be seen. However, candidates should show evidence (explicit or implicit) of using $E=h v(\checkmark)$, and dividing by both the Planck constant and the Avogadro constant (\checkmark) and converting between J and $\mathrm{kJ}(\checkmark)$.
	(c)	(i)	$\mathrm{Cl}+\mathrm{ClO}$ AND $\mathrm{ClO}+\mathrm{Cl}$	1	1.2	
		(ii)	trichlorofluoromethane \checkmark	1	1.2	IGNORE use of hyphens

Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.

Level 3 (5-6 marks)

Learners give a detailed account of imb's in $\mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{Cl}$ and CH_{4} (with most fine detail) AND use the relationship between strength of imb and bp AND give correct order of bp.
There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3-4 marks)

Learners give a detailed account of imb's in two out of three of $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{Cl}$ and CH_{4} (with most fine detail) AND give the relationship between strength of imb and bp or give correct order of bp
OR a brief account of imb's in all three (with some fine detail) AND the correct order of bp
There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks)

Learners give a detailed account of imb's in one out of three of $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{Cl}$ and CH_{4} (with most fine detail) AND give correct order of bp
OR a brief account of imb's in two out of three
OR the correct order of bp
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

6
2.1 (x3) Indicative scientific points include:
3.2 (x3) (fine detail in italic)

$\mathrm{CH}_{3} \mathrm{OH}$

- attraction is a very strong imb
- hydrogen bond
- (contains) highly electronegative O (atom)
- bonded to a H (atom)
- O-H bond is highly polar
- H atom is very small
- H gets very close to O (on neighbouring molecule)
- Ione pair on O 'lines up’ with H (on neighbouring molecule) / form directional bond between O and H

$\mathrm{CH}_{3} \mathrm{Cl}$

- permanent dipole-permanent dipole/pd-pd bonds
- not as strong as hydrogen bonds
- (contains) electronegative Cl (atom)
- C-Cl bond is polar
- permanent dipole in $\mathrm{CH}_{3} \mathrm{Cl}$
CH_{4}
- instantaneous dipole - induced dipole bonding/ Van der Waals'/ London
- weaker than pd-pd
- no electronegative atom
- molecule is non-polar
- unequal distribution of electron density
- causes temporary dipole in CH_{4}
- induces dipole in neighbouring CH_{4}

Relationship of bond strength to bpt

- stronger the imb, the higher the bpt

Order of boiling points

- order of b.p. is $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{4}$

Question			Answer	Marks	AO element	Guidance
4	(a)		(In a position of dynamic equilibrium, the) concentrations of reactants and products do remain constant \checkmark (The) forward and reverse reactions have not stopped (but) occur at equal rates	3	3.2 (x3)	
	(b)	(i)	$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CH}_{3} \mathrm{OH}\right] /[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2} \checkmark$	1	1.1	
		(ii)	CHECK ANSWER ON ANSWER LINE If answer $=0.113\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award 2 marks $\begin{aligned} & {\left[\mathrm{H}_{2}\right]=\sqrt{ }\left(\left[\mathrm{CH}_{3} \mathrm{OH}\right] / K_{\mathrm{c}}[\mathrm{CO}]\right)} \\ & {\left[\mathrm{H}_{2}\right]=0.113\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \end{aligned}$	2	2.4	ALLOW ecf

$\left.\begin{array}{|c|c|l|}\hline \text { (c)* } & \begin{array}{l}\text { Please refer to the marking instructions on page 5 of this } \\ \text { mark scheme for guidance on how to mark this question. } \\ \text { Level 3 (5-6 marks) } \\ \text { Learners give an account of BOTH yield and rate for } \\ \text { BOTH pressure and temperature (with some explanatory } \\ \text { points) and draw a conclusion } \\ \text { There is a well-developed line of reasoning which is clear } \\ \text { and logically structured. The information presented is } \\ \text { relevant and substantiated. }\end{array} \\ \begin{array}{l}\text { Level 2 (3-4 marks) } \\ \text { Learners give an outline account of BOTH yield and rate } \\ \text { for BOTH pressure and temperature } \\ \text { OR } \\ \text { Learners give a detailed account of EITHER yield OR } \\ \text { rate for BOTH pressure and temperature } \\ \text { OR yield and rate for one of temp/pressure (with some } \\ \text { explanatory points) } \\ \text { There is a line of reasoning presented with some } \\ \text { structure. The information presented is relevant and } \\ \text { supported by some evidence. } \\ \text { Level 1 (1-2 marks) } \\ \text { Learners give an outline account of EITHER yield OR } \\ \text { rate for EITHER pressure OR temperature } \\ \text { There is an attempt at a logical structure with a line of } \\ \text { reasoning. The information is in the most part relevant. }\end{array} \\ \mathbf{0 ~ m a r k s ~} \\ \text { No response or no response worthy of credit. }\end{array}\right\}$

(d)		 labelled energy level of $\mathrm{CH}_{3} \mathrm{OH}$ below that of reactants enthalpy profile AND E E_{a} label for uncatalysed reaction \checkmark enthalpy profile AND E_{a} label for catalysed reaction lower than that for uncatalysed reaction	3	$1.1 \text { (x3) }$	DO NOT ALLOW double-ended arrows for E_{a} IGNORE an arrow for $\Delta \mathrm{H}$
	(ii)	heterogeneous \checkmark	1	1.1	
	(iii)	bond fission/breaking in reactants (bond) fusion/making in product	2	1.1 (x2)	
		Total	18		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

